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ABSTRACT 

In this paper we propose a traffic model for delivering scal- 
able video encoded with multiple layers on heterogeneous 
networks. The model is based on Markovian arrival process 
with marked transitions. The state of the underlying Markov 
chain of the video arrival process is derived from the corre- 
lation feature found in the video data. The base layer and 
enhancement layer video frame size pairs are decided by 
a cluster detection algorithm; each cluster corresponds to 
one state of the Markov chain. The joint base and enhance- 
ment layer video frame size distribution for each state of the 
Markov chain is approximated by multivariate normal dis- 
tribution. Simulation study on the traffic model data and the 
video trace data is carried out and compared with the model. 
The results show that the proposed traffic model can predict 
the network performance with good accuracy. 

1. INTRODUCTION 

Layered video encoding is widely adopted for multimedia 
video applications in heterogeneous network environment 
with diverse bandwidth and loss behavior. A key purpose 
of video source modeling is to employ the traffic model to 
predict the network performance. To maintain an accept- 
able visual quality for real-time video, sufficient network 
bandwidth need be allocated to reduce the delay. In such 
situation, the short range dependence property of video data 
is more important to predict the network performance [4]. 
Thus, traditional Markov based models are widely used to 
model video data directly, or used as a building block to 
model more complex video traffic. A source model based on 
Markov modulated Auto-Regressive process for two layer 
video was proposed in 121. The model, however, can not 
capture the cross layer correlation since the base layer is 
assumed to be CBR. For layered video, the base layer and 
the enhancement layer(s) video data are often correlated be- 
cause of cross layer predictive coding; further, the base layer 
can be VBR. Thus traffic model taking the above factors 
into consideration is desired, which is the motivation of this 
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paper. Specifically, we propose a traffic model for video 
source with no (or very few) scene change and scalably en- 
coded in multiple layers. The model is based on the discrete 
time batch Markovian arrival process (DBMAP) [ I ]  with 
marked transitions. Since the model can grasp the cross 
layer correlation, i t  can be more precise in predicting the 
network performance; further, since the model is Markov 
based, the involved queueing system is solvable. 

2. THE LAYERED VIDEO TRAFFIC MODEL 

Markovian arrival process (MAP) [51 is widely used in mod- 
eling heterogeneous data traffic due to the versatility. Scal- 
able video data are organized in more than one layers, with 
different significance in affecting the decoded video quality. 
This naturally leads to the representation of such video traf- 
fic by using an MAP with marked transitions [3], in a way 
that different type of transitions correspond to different type 
of traffic arrivals. 

2.1. DBMAP with Two Types of Arrivals 

We first briefly introduce the DBMAP process with marked 
transitions. Consider an n-state DBMAP with two types of 
arrivals, which can be from class-1 or class-2 traffic. Let 
the maximum batch size for class-1 and class-2 traffic ar- 
rival to be bl and bz, respectively. The marked DBMAP is 
defined by {Doe, Dol, .__ D b l b z } ,  each D,,<, is an n x n 
transition matrix. Suppose that at time t ,  t 2 0, the un- 
derlying Markov chain of the DBMAP process is in state 
j ,  1 5 j 5 n. Then at time epoch t + 1, with conditional 
probability D 5 1 < 2 ( j , j ' ) ,  0 5 i l  I b l ,  0 5 i2 5 bz,  the 
process transits to state j ' ,  1 5 j' 5 n, which is triggered 
by an arrival from class-1 traffic with batch size of il, and 
an arrival from class-2 traffic with batch size of iz, simul- 
taneously. Note that it and i z  might be 0. The transition 
probability matrix for the underlying Markov chain of the 
arrival process is given by D = C::', C::=, Di1,>. 

Assume the arrival process is in stationary state and the 
initial probability vector is 7r = [7r1,7rz1 ...,T,,], let e be a 
column vector with all elements being l 's, then we have 
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Fig. 1. Rate pairs as point set on 2-dimensional plane 
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Fig. 2. Clustering results for rate point sets 

r e  = 1 and ?rD = ?r. Class-1 traffic arrival rate is given by 
= r ( ~ ! : = ,  ~ $ , i l ~ ; , ; , ) e ,  class-2 traffic arrival rate 

is given by Xz = ?r(C,:=, Ci ,2=oi~D; , ;2)e ,  and the total 
traffic arrival rate is given by X = XI + XZ. 

b b 

2.2. Markov Based Video Source Model 

We study 3 short video sequences, Foreman, Grandma and 
Paris. Foreman contains 400 frames and the picture size is 
176 x 144 in pixels (QCIF). Grandma contains 870 frames 
and the picture size is also 176 x 144. Paris contains 1000 
frames and the picture size is 352 x 288 (CIF). Foreman con- 
tains one time of scene change and the video pictures have a 
comparatively larger degree of movement, while Grandma 
and Paris contain no scene change, and the video mainly 
consist of pictures with slow motion. 

We assume the I-frames are triggered by scene change 
resulting in an arbitrary number of P-frames following, as 
in [Z]. Thus all the three video sequences are encoded in 
IPPPPP. .. pattern without any fixed GOP, i.e., only the first 
video frame is encoded in I-frame, and all the subsequent 
frames are encoded in P-frames. We encode the video se- 
quences in two layers. The base layer data is encoded with 
TM5 rate control, while the enhancement layer is encoded 
in MPEG-4 FGS [6]. In the analysis we only consider the 
first sublayer of the enhancement layer video data. Our aim 
is to develop a tractable and accurate traffic model for video 

sequence without or with very few scene change. We expect 
that by incorporating scene detection and modeling meth- 
ods, longer video sequence can be modeled. We model the 
layered video data in the following four steps. 

In the first step, we analysis the rate clustering feature 
of the video data. We view the encoded 2 layer video frame 
sequence as a vector time series along the frame index, i.e., 
(Rb(t), R,(t)), t = 1 ,2 ,3 , .  . _. HereRb(t) denotestheframe 
size of the t-th base layer video frame, and R,(t) denotes 
the frame size of the t-th enhancement layer video frame. 
We draw all the (Rb(t), R,(t)) pairs as points on the 2-D 
plane, where &(t) and &(t) are viewed as the z and y co- 
ordinates of the corresponding point. Since the raw video 
sequence has very few scene change, and the encoding pat- 
ternisIPPPPP. .., weexpectthattheratepairs (Rb(t),R,(t)) 
and (Rb(t+l), R , ( t t l ) )  shouldbelocatedveryclosefrom 
each other on the 2-D plane. Thus when all the pairs are 
drawn, the graph should have a clustering feature. This is 
quite intuitive, since if there is no scene change, contents of 
the successive video pictures are very similar, and the en- 
coded data rates should have small variation. This is clearly 
depicted in Fig. 1. We observe that all the three video se- 
quence Foreman, Grandma and Paris show a strong cluster- 
ing characteristics. 

In the second step, for each video sequence, we do clus- 
ter analysis on the corresponding rate pair point set. We 
adopt the hierarchical cluster detection algorithm. Basically 
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0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0. 
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.67 0.23 0.01 0.01 0.0 0.03 0.0 0.0 0.03 0.02 
0.0 0.0 0.23 0.52 0.16 0.02 0.0 0.01 0.04 0.02 0.0 0.0 
0.0 0.0 0.12 0.18 0.44 0.22 0.04 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.17 0.0 0.50 0.11 0.22  0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.02 0.03 0.02 0.05 0.82 0.05 0.0 0.0 0.0 0.0 
0.0 0.0 0.02 0.0 0.0 0.0 0.05 0.84 0.09 0.0 0.0 0.0 
0.0 0.0 0.0 0.19 0.0 0.0 0.0 0.03 0.75 0.03 0.0 0.0 
0.0 0.0 0.0 0.40 0.40 0.0 0.0 0.0 0.0 0.20 0.0 0.0 
0.0 0.0 0.44 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.56 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0 . 0 .  

Fig. 3. Transition probability matrix for Foreman (left) and Paris,(right) 

- 0 . 0  1.0 0.0 0.0 0.0 0.0 0.0 0.0 
0 . 0 0 . 0  1.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.78 0.005 0.03 0.125 0.016 0.046 
0.0 0.0 0.17 0.83 0.0 0.0 0.0 0.0 
0.0 0.0 0.59 0.0 0.41 0.0 0.0 0.0 
0.0 0.0 0.20 0.0 0.0 0.66 0.12 0.02 
0.0 0.0 0.035 0.0 0.0 0.148 0.127 0.690 

. 0.0 0.0 0.085 0.0 0.0 0.020 0.375 0.520 

this works as follows: for a set of n points, we start with 
n clusters, each containing a single point; we then recur- 
sively aggregate the nearest two clusters into one. We apply 
the complete linkage clustering criterion, and take a heuris- 
tic approach to stop the aggregation process. The clustering 
results are shown in Fig. 2. We obtain 12 clusters for Fore- 
man, 9 clusters for Grandma, and 8 clusters for Paris'. 

In the third step, we construct a Markov chain based on 
the above clustering results. We view each cluster as one, 
state for the underlying Markov chain of the video arrival 
process. We estimate the transition probability matrix for 
each Markov chain as follows: 

number of jumps from state i to state j 
number of jumps out of i P i j  = 

In this way we obtained the transition probability matrix for 
Foreman and Paris as shown in Fig. 32. 

In the fourth step, for each state of the Markov chain, 
we estimate the joint (buse, enhance) frame size distribu- 
tion. Since we applied the complete linkage clustering al- 
gorithm, the resulting clusters have compact and nearly cir- 
cular shape. This naturally leads to approximate the joint 
frame size distribution in each state of the Markov chain 
by bivariate normal distribution. More general or accurate 
estimation of the rate distributions can be applied by using 
other multivariate density estimation methods. 

Thus we obtain a video traffic model based on a Markov 
modulated process with correlated barch arrivals. In the 
model the arrival process evolves according to the under- 
lying Markov chain. In each state of the Markov chain, the 
base and enhancement layer data arrival rates follow the cor- 
responding two dimensional normal distribution. We next 
show that the above traffic model belongs to the marked 
DBMAP process introduced in Section 2. I .  Denote the tran- 
sition probability matrix of the underlying Markov chain as 
T.  Suppose that we divide the range of data rate for an ar- 

' In  what fallows we only presentresultr for Forenran and Paris because 
of space limitation. For detailed resultr please contacl with lhe canespond- 
ing author and refer t o  OUT technical wpon. 

'In OUT calculalion, the pi ,  has a precision near 

Video sequence 
Base layer Enhance layer 

frame size Video lcnglh hame sile 
1 I I I 

Foreman X=248.78 I X=126.98 I 
l a c e  KXl framer (bytes) 

toreman n='.+_l.,Y n=l 

I U C d d  4 0 0 h m c r  (bytes) ''? 
Gmndma X=1997.93 n=i 

SOA=0.1653 I "ts 

I SDA=0.3739 

870fmmcr (bh) 

Grandma x=1991.11 

SDA=O.1209 
PZiE X=798.56 
trace IWO framer 

(bytes) 
SOA=0.9024 

ratio. 

n=,J'. , ' 
Illodd I(100framer (byres) 

SDA=0.1348 
Note: X=mean. SDA=riandnd deviation to average 

Table 1. Statistic comparison of trace data and model data 

bitrary state i ,  1 5 i 5 n, of the Markov chain into discrete 
levels, with a level size of b,. Let fi(u, U) be the two dimen- 
sional normal density function for state i ,  and let Fi(z ,  y) = 

so1 so fi(u, u)dudu, then the parameter matrices for the 
markedDBMAP, { D ,  DOO, . . . D, , i2 , .  . . , Db,bz} .  can bede. 
rivedasfollows: DillZ = ( F i ( i l , i 2 ) - F i ( i l  - l , i ~ - l ) ) D ,  
for ii > 0, 22 > 0, Do0 = D - D S , , ~ ,  and 

b.r biy  

D = T.  

3. SIMULATION RESULTS 

We validate the traffic model by simulation study. First, we 
generate sample data from the traffic model, and compare 
the statistics between the generated video traffic and the 
video trace. The results are shown in Table 1. From the 
table it can be seen that the statistics of the two data sets, in- 
cluding the mean and the standard deviation to average ratio 
(SDA) are comparatively close. In particular, the frame size 
probability density functions (pdf's) for the model data and 
the trace data are well matched for all the three video se- 
quences. This is shown in Fig. 4 and Fig. 5 .  
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(c) Base layer, model (d) Enhancement layer, model 

Fig. 4. Foreman frame size pdf: trace vs model 
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(c) Base layer, model (d) Enhancement layer, model 

Fig. 5. Paris frame size pdf trace vs model 

We next take a simple approach to compare the network 
performance for the trace data and the model data. We in- 
ject data generated from the traffic model and data recorded 
in the video trace file into the network, respectively, and 
compare the queueing behavior of the network transmission 
buffer. We divide the network bandwidth into two parts, in 
proportion to the mean arrival rate for the base and enhance- 
ment layer video data. We assume the network transmission 
buffer has infinite size. Since the base layer encoding is un- 
der rate control and the base layer traffic has a relatively 
small variation, we only show the enhancement layer queue 
length cumulative distribution function (cdf) in Fig. 6. We 
observe that the enhancement layer queue length cdf curves 
for the model data and the trace data are closely matched, 
especially in the range where the queue size is large. The 

Fig. 6. Enhancement layer queue length cdf: trace vs model 

results demonstrate that, in terms of network queueing im- 
pact, the traffic model can emulate the video trace data with 
a good accuracy. 

4. CONCLUSIONS 

In this paper we proposed a traffic model for layered video 
with no or few scene changes. Simulation study shows that 
the proposed traffic model can predict the network perfor- 
mance with good accuracy. In our modeling example we 
only analyzed video traces coded in 2 layers. The reason 
is that we lack scalable video trace coded in more than 2 
layers. The modeling approach, however, is general and 
applicable for n-layer case. For example, if the video is en- 
coded in 3 layers, a data tuple, (base, enhancel,  enhance2) 
would appear to he a three-dimensional point in the 3-D 
space. Subsequently, 3-D cluster analysis algorithm can be 
applied and the underlying Markov chain can be estimated, 
and a traffic model can be developed in a similar approach 
as in Section 2.2. We are interested in performance evalua- 
tion of different network scheduling algorithms for layered 
video data transmission, and in extending the proposed traf- 
fic model for long video sequence with scene changes; as 
well as for layered video encoded in fixed GOP pattern. 
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